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Abstract. The phase diagram of an extended Josephson junction in the magnetic field- 
temperature plane is constructed. It contains a floating (incommensurate) phase, which 
corresponds to the usual intermediate state, high-order commensurate phases and a liquid- 
crystal-like disordered phase. It is shown that the disappearance of the Josephson effect is a 
weak first-order phase transition connected to bulk superconductivity breaking. The influ- 
ence of defects is also considered. 

1. Introduction 

It is widely known that a Josephson junction placed in a longitudinal magnetic field is 
the two-dimensional analogue of a type-rwo superconductor. The ‘classic’ papers here 
are Kulik (1966) and Owen and Scalapino (1967). Subsequently, this approach has been 
developed to the point, for example, of being employed in the design and experimental 
testing of practical Josephson elements for computer applications. This body of work 
and recent theoretical developments are reviewed by Barone and Paterno (1982). 

If the external field exceeds some critical value H,, the Meissner state becomes 
unstable with respect to spontaneous arising of Josephson vortices. It follows from 
the electrodynamics of the weak superconductivity that the phase transition into the 
intermediate state iscontinuous. It means that the Josephson vorticesrepulse each other 
provided the distance between them is large. The picture outlined is similar to the 
commensurate-incommensurate (IC) phase transition (Bak 1982). It is easy to check by 
comparing corresponding equations that this similarity is very deep. It is interesting to 
note that the authors of the latest reviews devoted to IC phases (Fisher 1984, 1986, 
Nattermann and Villain 1988) did not consider the Josephson junction as a system with 
an IC phase$. The only work that uses this analogy (Browne and Horovitz 1988) is 
devoted to the interpretation of the I-V characteristics of high-T, superconductors near 
the bulk phase transition (Dubson et a1 1988, Stamp et a1 1988). The suggestions of 
Browne and Horovitz (1988) that related to the vicinity of T, will be discussed below. 
However, there are many interesting phenomena that should take place in all the region 
of existence of weak superconductivity. The aim of the present work is to fill in this gap. 
t Present address: Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506. 
USA. 
$ Thiscorresponds to the history of the discovery of IC phases (Bak 1982). The theory has been rediscovered 
independently, in widely different contexts, many times. That is why i t  is necessary to include Kulik in the list 
of authors of this seminal discovery. 
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We shall construct the phase diagram of the Josephson junction at finite temperature, 
andstudy the discretenesseffectsand theinfluenceofweakdisorder. It isquiteprohable 
that the Josephson junction as a real two-dimensional system will represent more 
possibilities for experimental verification of the very interesting theoretical predictions 
than the usual objects (Fisher 1986). The resultsobtained have a general character, but 
the most prominent effects should be observed in high-T, materials. 

2. Phase transition into the intermediate state at finite temperature 

First, let us remember how the phase transition into the vortex state takes place at zero 
temperature (Kulik 1966, Owen and Scalapino 1967, Kulik and Yanson 1970, Barone 
and Paterno 1982). The free energy per unit length of a Josephson vortex in an external 
field H has the form 

E - H@0/4,z 

where E is the linear tension of a vortex and @n is the flux quantum. If we account for 
the inter-vortex repulsion, which depends on their mean distance l/n, 

const(@$/Ab) exp(-l/n6) 

(here A and 6 are the London and Josephson penetration depths, respectively: to be 
specific we consider the Josephson junction consisting of the same superconductors and 
the thickness of the junction is small compared to A) and we multiply the resulting 
relation by the vortex density n ,  we obtain the formula for the free energy per unit area: 

g = n [ ~  - H@,/4n + const(@/Ab) exp(-I/n6)]. (1) 
Equation (1) makes sense provided that n6 Q 1. If the external field is less than H,, = 
4n&/@, the minimization of g with respect to n leads to the conclusion n = 0, which 
means stability of the Meissner state. For H > HcI the free energy of a vortex becomes 
negative and vortices begin to arise spontaneously. However, owing to repulsion among 
them (the second term on the RHS of ( l ) ) ,  the vortex density increases continuously 
from zero. Minimization with respect ton gives 

fla = I/WH,,/(H - HC1)l (2) 
where He, = Qn/hb. Magnetic induction B is connected to the vortex density by relation 
B = &“/A. Therefore, for magnetization M near H,, we obtain (Kulik 1966) 

( ~ M / ~ H ) I H - H ~ , + O  =H,i/(H-H,i)In*IH,,/(H-H,,)l. (3) 

Let us account for thermal fluctuations by means of the methods described by Fisher 
(1986) and Nattermann and Villain (1988). The elastic energy of a vortex has the form 

H = I dy ~ (dx /d j )~ /Z .  (4) 

We assume that magnetic field is directed along the y direction and x indicates the 
displacement of a vortex from a reference line. The main difference between the system 
under consideration and earlier studied two-dimensional ones (Fisher 1984) is the 
absence of the singularity of Linear tension E at T+ 0. 
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The free-energy contribution due to thermal fluctuations can be estimated from 
equation (4) by averaging the integrand taken with opposite sign (since thermal fluc- 
tuations diminish the free energy): 

f= E - const E((dx/dy)’) = E - const E -kZ(Ix,, 1 2 )  1: 
= E - const dk = E - const TI6 + const TIL. (5)  r 

The lower bound in the integral is the inverted vortex length L-’ and the upper one is 
the inverted Josephson penetration depth 6-’ (since the maximal frequency of the 
Josephson vortex oscillation, the so-called Josephson plasma frequency w,, corresponds 
to wavenumher k = 6-1 (Kulik 1966, Kulik and Yanson 1970)). The second term in 
equation (5) is the entropic contribution to the vortex free energy and the third one is 
the finite-size correction. For a single flux line the last one goes to zero at L + m; 
however, it leads to a specific entropic repulsion if we consider a chain of vortices. Let 
us calculate the RMS deviation w(L)  = {([x(L) - X ( O ) ] ~ ) } ’ ~ ~ .  From the Hamiltonian (4) it 
follows that 

W ( L )  = (TL/E)@. (6) 
The neighbouring vortices restrict maximal transverse deviation of a given vortex due 
to mutual ‘collisions’. Hence the maximal deviation is equal approximately to I / n  and 
the ‘free collision length’ is equal to 

The substitution of L,, into the third term in (5) leads to the expression for the free 
energy at finite temperature: 
g = n[& - HOo/4?c - const T/6 + const(O$/AS) exp(-l/n6) + n2T2n2/6~].  (8) 
The numerical factor in the third term in (8) can be recovered on comparison with the 
exact solution of a similar problem (Pokrovsky and Talapov 1979). Equating the first 
term on the RHS of the last relation to zero, we obtain the temperature dependence of 
the lower critical field 

Formulae (8) and (9) make sense if the quantum effects are negligible. The correspond- 
ing condition has the form 

where f i  is the Planck constant. The above condition really means that the temperature 
should exceed several degrees (Kulik and Yanson 1970). The third term in (8) dominates 
the second one for small n. Upon minimization of (8) with respect to n at n-+ 0, one 
obtains the seminal result of Pokrovsky and Talapov (1979): 

Correspondingly, instead of equation (3) we have 

Formulae (11) and (12) are asymptotically exact in the vicinity ofHcI. The width of this 
region can be estimated by comparing equations (2) and (11): 

One has to use equation (12) with care because it will be shown below that inside the 

L,,, = e/Tn2. (7) 

H,,(T) = Hcl(0)(l - const T / E ~ ) .  (9) 

T + fio, (10) 

n = (00E/2xZTZ)1/Z(H - HCl)’/’. 

(dM/dHI+,Hc, = (OiE/TZAZ)(H - Hcl)-l’z. 

H ,  - HC1 = ~ / 6 z O o s  ln2(e6/T). 

(11) 

(12) 

(13) 
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interval (13) the Josephson flux lattice is melted and it is, in fact, similar to a two- 
dimensional liquid crystal. 

3. On the long-range order in the intermediate state 

The flux line chain arising at H > H,, can be considered as a two-dimensional crystal. 
Its elastic constants were, in fact, calculated by Lyuksyutov and Pokrovsky (1982). The 
compression modulus K ,  of the vortex lines can be obtained from expression (8) for the 
free energy: 

K ,  = n2(d2g/dn2) = (C@g/A63n) exp(-l/n6) + n 2 T Z n 3 / ~ .  (14) 

Here Cisanumerical constant oftheorderofunity. The tilt modulus Kzcan beassociated 
with the tension of a vortex 

Kz =En. (15) 

U = 1 dx dy[Kl(8u/8w)' + K2(8u/8y)']  (16) 

The elastic energy of a vortex chain can be written as follows: 

I 
where U is the transverse displacement of a vortex. It is known due to Peierls and Landau 
(Landau and Lifshitz 1976) that long-range translational order is absent in a two- 
dimensionalcrystal that is described by the Hamiltonian (16). For the intermediate state 
of the Josephson junction this result was first obtained by Fetter and Stephen (1968). 
Usingequation(16) itiseasy toshow thattherwsdeviationofthevortexlatticeincreases 
as the logarithm of the system size. Therefore, instead of the IC phase one obtains a 
'floating' phase with no long-range order but with an algebraic decay of correlation 
functions (Bak 1982). Note that the thermal fluctuations rather than the quantum ones 
destroy the long-range order. The energy U can be reduced to the Hamiltonian of the 
XYmodel. It is known that melting of the floating phase via the Berezinsky-Kosterlitz- 
Thouless (BKT) dislocation-mediated mechanism is possible in this case (Kosterlitz and 
Thouless 1973). Such melting is quite probable near H,, where elastic moduli K ,  and K 2  
are small. Using directly the equation for the transition temperature of the Kosterlitz- 
Thouless theory (Lyuksyutov and Pokrovsky 1982) one obtains 

T, = (K,K2) ' /Zbz/8n (17) 
where b is the Burgers dislocation vector. In the case under consideration b = l/n. 
Inserting (14) and (15) into (17) one finds the equation 

6n = l/ln(Q;/T,A) = l/ln(&6/Tm). (18) 

It is clear that on the melting curve (17) and (18) the second and the third terms in 
equation (8) are equal within an order of magnitude. Therefore, the expression (13) is 
the melting curve also. Hence, at fields slightly above H,, the vortex structure has not 
even algebraic order and it is equivalent to a two-dimensional liquid crystal (since the 
orientational order persists). Inside this region the combination of elastic constants 
(K1K2)Ifl is renormalied by the free dislocations to zero. If the external field achieves 
H ,  (13), the BKT phase transition takes place and the floating phase with algebraicorder 
arises. The combination of elastic moduli ( K  ,K2)1/z  increases discontinuously from zero 
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to some finite value at H = H,; above the transition it has the dependence on Tor H 
specific to the BKT theory. Inside the floating phase K, and KZ are expressed by formulae 
(14) and (15). The nature of the phase transition at H = H,, and the form of the 
magnetization curve between H,, (9) and H,,, (13) are unknown. But near the boundary 
between liquid crystal and floating phase the magnetization curve has to be similar to 

Up to now we have neglected discreteness effects. They would be important at low 
temperatures since the divergence of the RMS deviation of a vortex lattice is very weak 
(the logarithmic one). If the crystalline potential suppresses the fluctuations we have in 
fact a high-order commensurate phase with the usual long-range order. The organ- 
ization of such phases is described by Uimin and Pokrovsky (1984). All the phases can 
be divided in two groups: the simple and the complex ones. The first group consists of 
structures that have a period different from the period of the neighbouring simple ones 
by the crystalline lattice spacing. The complex structures are constru~ed from an 
arbitrary sequence of neighbouring simple ones. If the temperature is equal to zero 
and the magnetic field increases, the system jumps through the infinite sequence of 
commensuratestates (the complete ‘devil’sstaircase’(Bak 1982)). At finite temperature 
the thermal fluctuations destroy the most complex commensurate phases and we have 
the incomplete ‘devil’s staircase’. In order to determine the boundary between the 
floating phase and the incomplete devil’s staircase, it is enough to consider the simple 
structuresonly (Villain 1980, Uimin and Pokrovsky 1984). If the periodof the crystalline 
lattice is equal to U ,  one has to consider the generalization of the Hamiltonian (16): 

(12). 

U = I dx dy{+[Kt(au/ax)2 + Kz(au/ay)2] - Vcos(Znu/a)} (19) 

where V= (@&/As) exp(-S/u) (Villain 1980) is the amplitude of the periodic relief. 
The Hamiltonian (19) describes roughening phase transition (Villain 1980, 
Nozieres and Gallet 19&7), belonging to the BKT universality class, which corresponds 
to the depinning of the vortex chain from a crystalline relief (transition into the floating 
phase). Using the Kosterlitz-Thouless relation for the phase transition temperature we 
have 

T ,  = 2(K1 K2)1/2a2/x. (20) 
Note that this equation has a solution if nu S 1/2’/2. In the case of the opposite inequality 
the commensurate phase persists. It is interesting to compare the melting temperature 
(17) and the pinning-depinning temperature (20): 

It is evident that near the lower critical field (n  + 0) T, < T, always. After the sub- 
stitution of the expressions for elastic moduli in equation (20) one obtains the transition 
curve (na Q 1) 

Let us remember that the absence of the amplitude of the potential Vin equations (20) 
and (22) is a general property of a roughening transition (Nozieres and Gallet 1987). 
This amplitude determines the value of the reduced temperature interval t p  = 1 T -  Tpl/ 
T, where the critical singularities are appreciable: 

At V = 0 the singularity disappears and equation (22) has no meaning. From the last 

T,/T,,, = 16a2n2. (21) 

H, - H,, T;S2/~‘~@,. (22) 

f, = V ~ ~ ’ S / ( K , K ~ ) ~ / * ~ *  = (@;/~,~)exp(-S/a).  
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estimate we can see that in order to provide the best conditions for the observation of 
the pinning-depinning transition it would be desirable to have tp 

If we take for concreteness T, = 10 K, I, = lo4 A we obtain 6/u = 15-20. However, 
taking into account the characteristic value of 6 = lo-* cm (Barone and Patemo 1982) 
leads to the conclusion that the discreteness effects are observable only in the very near 
vicinity of Tp: However, they would be quite prominent if we could make artificial 
periodicity using a Josephson junction of variable periodic thickness. Another way i s  to 
pin the periodic chain of the Abrikosov vortices along the surface of the junction 
(Aslamazov and Gurovich 1984). 

1, or 
6 = Q In(@$/T$). 

4. Limitations and the vicinity of the phase transition 

The free-energy expression (8) permits us also to make some qualitative conclusions 
about the temperature of disappearance of the Josephson effect. It takes place at 

Tj c= €6 (23) 
and corresponds to the creation of spontaneous vortex loops inside the junction at zero 
external field. The last expression can also be obtained via application of the Kosterlitz- 
Thouless criterion to the Josephson Hamiltonian (Kulik 1966). Relation (23) is in 
accordance with the scaling hypothesis. Indeed, there is only one intrinsic scale length 
in the two-dimensional system under consideration, namely the Josephson penetration 
depth,whichplaystheroleofthecorrelationlengthneartbephasetransition. According 
to the scaling hypothesis E ,  the energy of the linear manifold, should go to zero as 
TJ/6 and one returns to (U). 

Comparison of equations (U) and (18) shows that near T, the above-mentioned 
condition n6 Q 1 breaks down. The temperature dependence of H,, in this region 
was obtained by Browne and Horovitz (1988). Equation (23) with the help of the 
determination of E can be rewritten in the form 

T ,  = @:/A (24) 
whichdoesnot contain the Josephson penetration depth. Substitutionofthe temperature 
dependence of A from the Ginzburg-Landau theory (Lifshitz and Pitaevsky 1978) into 
equation (24) leads to the conclusion that TJ is very close to the temperature of the bulk 
phase transition T,: 

T,  - T,  = Tck-ZGi.  (2.5) 
Here k is the Ginzburg-Landau parameter and Gi is the Ginzburg parameter (Landau 
and Lifshitz 1976, Lifshitz and Pitaevsky 1978). Interval (25) has to lie outside the 
fluctuation region because we have used the temperature dependence of A within the 
framework of the Ginzburg-Landau theory. This condition is evidently fulfilled for type- 
one superconductors. However, owing to the vector-potential fluctuations the phase 
transition into the normal state is a discontinuous one (Halperin el a/ 1974). The ‘size’ 
of the first-order transition is 

AT,  = Tck-6Gi. (26) 
Therefore bulk superconductivity breaking takes place below the temperature TJ (25) 
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r . .. 

Figure 1. PhasediagramofJosephson junction in 
magnetic field-temperature plane. 

is achieved. Hence the jumps of different quantities which belong to the Josephson 
effect can be found by substitution of AT, (26) into the dependences from the Ginzburg- 
Landau theory. 

Let us consider a Josephson junction that consists of type-two superconductors. 
The analogue of equation (25) follows from the results of Kolomeisky (1988): 

Note that (27) doesnot prove the suggestionof Browne and Horovitz (1988) that T, > T, 
since the interval (27) is in fact the boundary of stability of the superconductive state 
with respect to the spontaneous arising of Abrikosov vortices (Kolomeisky and Lev- 
anyuk 1989). Such a bulk transition should be a first-order one and it should take place 
before the boundary of stability (27) is achieved. Therefore, the disappearance of the 
Josephson effect is a weak first-order phase transition connected with bulk super- 
conductivity breaking independently of the type of superconductors. The respective 
temperatures of the first-order transitions are equal. 

The results obtained enable us to construct the magnetic field-temperature phase 
diagram (figure 1). The shaded region between H, (13) and H,, (9) corresponds to the 
two-dimensional liquid crystal. The Meissner phase is located at fields below Hcl. On 
the left of Hp (22) one has the IC phase with peninsulas of high-order commensurate 
phases. The region between Hp and H, is the floating (IC) phase (the usual intermediate 
state). The boundary of existence of weak superconductivity is restricted at high fields 
by the upper critical field (for type-two superconductors) or by the thermodynamic 
critical field (for type-one superconductors). 

Note that even near the phase transition (27) the difference between H,,, and H,, is 
very small: for T, = 100 K it is of order 10-4-10-5 Oe. Therefore the experimental 
discovery of the liquid-crystal phase will be very difficult. However, the observation of 
the incomplete devil’s staircase (on the left of Hp) is probably possible. For example in 
this region one has to see the magnetization curve with characteristic steps, jumps and 
continuous parts (Bak 1982). If the temperature increases, the share of the continuous 
parts will grow and at H a H ,  one obtains the continuous magnetization curve. 

5. The influence of defects 

Let us consider the intluence of weak disorder on the properties of the intermediate 
state. There are two types of defects from the point of view of a single flux line. The 

T ,  - T,  = T,k-’Gi314. (27) 
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Abrikosov vortices pinned in the bulk of the superconductors can play the role of 
random-field-type defects (Aslamazov and Gurovich 1984). The inhomogeneity of the 
junction thicknesscan represent the random-bond disorder (for review see Fisher 1986, 
Nattermann and Villain 1988). The influence of defects is accumulated in a relation like 
equation (6): 

W = A L ~ .  (28) 
Here A depends on both the type and the concentration of defects whereas wandering 
exponent < depends on the type of defects only. The defect-induced wandering &f the 
vortex is qualitatively similar to the above-discussed influence of thermal fluctuations. 
A similar consideration leads to formulae like equations (1 1) and (12): 

n (A-2!tQ 0 )  / E  t/2(1-n(H - Hcl);/%l-C) (29) 

aM/aHIH-HCL+o (@ / A)(A-z/C@ 0 )  / E  c/2(1-c)(H- HcI)(3C-2)/2(1-C), (30) 

For the random bonds j = 213 (Fisher 1986, Nattermann and Villain 1988); therefore 

n = const(H - Hcl )  8M/aHIH,Hc,+o COnSt. 

An IC phase that arises at H 3 H,, has not even algebraic order. The phase diagram of 
such a junction is very interesting: it also contains (besides the Meissner and IC phases) 
a spin-glass phase (Kardar and Nelson 1985). 

Equations (29) and (30) have a singularity at 5 = 1 (random fields; Fisher' 1986, 
Nattermann and Villain 1988). It probably means that the phase diagram contains the 
Meissner phase only for fields less than some H,  s Hcl. At H = H, the first-order phase 
transition into the normal state should take place. The mechanism of this transition is 
probably connected with the arising of rough Josephson vortices, which fill in all the 
surface of the junction. 
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